

Document Title

128Kx8 Bit High-Speed CMOS Static RAM(3.3V Operating) Operated at Commercial and Industrial Temperature Range.

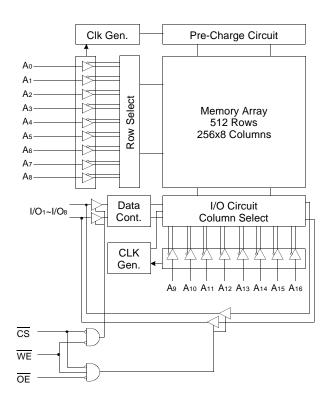
Revision History

<u>Rev.No.</u>	<u>History</u>	Draft Data	<u>Remark</u>
Rev. 0.0	Initial Draft	Aug. 5. 1998	Preliminary

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

128K x 8 Bit High-Speed CMOS Static RAM(3.3V Operating)

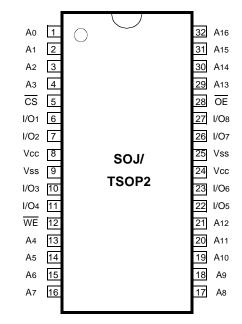
FEATURES


- Fast Access Time 12,15,20ns(Max.)
- Low Power Dissipation

 Standby (TTL) : 30mA(Max.) (CMOS) : 5mA(Max.) 0.3mA(Max.) - L-Ver. only
 Operating KM68V1002C/CL - 12 : 70mA(Max.) KM68V1002C/CL - 15 : 68mA(Max.) KM68V1002C/CL - 20 : 65mA(Max.)
- Single 3.3±0.3V Power Supply
- TTL Compatible Inputs and Outputs
- Fully Static Operation
- No Clock or Refresh required
- Three State Outputs
- 2V Minimum Data Retention ; L-Ver. only
- Center Power/Ground Pin Configuration
- Standard Pin Configuration
 - KM68V1002C/CLJ : 32-SOJ-400 KM68V1002C/CLT : 32-TSOP2-400F

ORDERING INFORMATION

KM68V1002C/CL -12/15/20	Commercial Temp.
KM68V1002CI/CLI -12/15/20	Industrial Temp.


FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM68V1002C is a 1,048,576-bit high-speed Static Random Access Memory organized as 131,072 words by 8 bits. The KM68V1002C uses 8 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using Samsung's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in highdensity high-speed system applications. The KM68V1002C is packaged in a 400mil 32-pin plastic SOJ or TSOP2 forward.

PIN CONFIGURATION(Top View)

PIN FUNCTION

Pin Name	Pin Function
A0 - A16	Address Inputs
WE	Write Enable
CS	Chip Select
ŌE	Output Enable
I/O1 ~ I/O8	Data Inputs/Outputs
Vcc	Power(+3.3V)
Vss	Ground
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS*

Parameter		Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss		Vin, Vout	-0.5 to 4.6	V
Voltage on Vcc Supply Relative to Vss		Vcc	-0.5 to 4.6	V
Power Dissipation		Pd	1	W
Storage Temperature	Storage Temperature		-65 to 150	°C
Operating Temperature	Commercial	Та	0 to 70	۵°
	Industrial	Та	-40 to 85	°C

* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(TA=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	3.0	3.3	3.6	V
Ground	Vss	0	0	0	V
Input High Voltage	Vін	2.0	-	Vcc+0.5**	V
Input Low Voltage	VIL	-0.5*	-	0.8	V

NOTE: The above parameters are also guaranteed at industrial temperature range. * VIL(Min) = -2.0V a.c(Pulse Width \leq 8ns) for 1 \leq 20mA

** VIH(Max) = Vcc + 2.0V a.c (Pulse Width \leq 8ns) for I \leq 20mA

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	LI	VIN = Vss to Vcc		-2	2	μA
Output Leakage Current	Ilo	CS=VIH or OE=VIH or WE=VIL VOUT = Vss to Vcc		-2	2	μA
Operating Current	Icc	Min. Cycle, 100% Duty	12ns	-	70	mA
		\overline{CS} =VIL, VIN = VIH or VIL,	15ns	-	68	
		Iout=0mA	20ns	-	65	-
Standby Current	ISB	Min. Cycle, CS=Vін		-	30	mA
	ISB1	f=0MHz, CS ≥Vcc-0.2V,	Normal	-	5	A
	ISB1	VIN≥Vcc-0.2V or VIN≤0.2V	L-Ver.	-	0.3	mA
Output Low Voltage Level	Vol	Iol=8mA		-	0.4	V
Output High Voltage Level	Vон	Iон=-4mA		2.4	-	V

DC AND OPERATING CHARACTERISTICS(TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise specified)

NOTE: The above parameters are also guaranteed at industrial temperature range.

CAPACITANCE*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	MIN	Max	Unit
Input/Output Capacitance	Ci/o	VI/O=0V	-	8	pF
Input Capacitance	CIN	VIN=0V	-	6	pF

* NOTE : Capacitance is sampled and not 100% tested.

୍ +3.3V

319Ω

5pF*

777

AC CHARACTERISTICS(TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise noted.) TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	3ns
Input and Output timing Reference Levels	1.5V
Output Loads	See below

NOTE: The above test conditions are also applied at industrial temperature range.

Output Loads(A)Output Loads(B)
for tHz, tLz, tWHz, tow, toLz & toHzDout $RL = 50\Omega$ VL = 1.5VJOUT $Zo = 50\Omega$ JOUT $Zo = 50\Omega$ JOUT

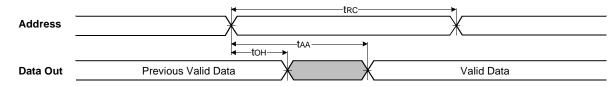
* Capacitive Load consists of all components of the test environment.

* Including Scope and Jig Capacitance

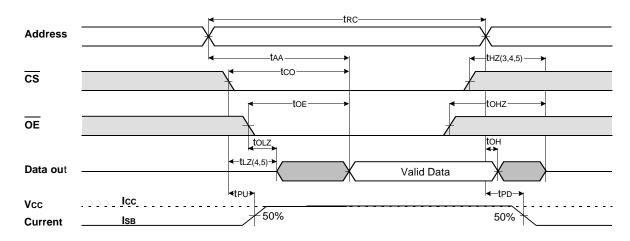
READ CYCLE

Parameter	Symbol	KM68V1002C/CL-12		KM68V1002C/CL-15		KM68V1002C/CL-20		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	tRC	12	-	15	-	20	-	ns
Address Access Time	tAA	-	12	-	15	-	20	ns
Chip Select to Output	tco	-	12	-	15	-	20	ns
Output Enable to Valid Output	tOE	-	6	-	7	-	9	ns
Chip Enable to Low-Z Output	t∟z	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	6	-	7	-	9	ns
Output Disable to High-Z Output	tonz	0	6	-	7	-	9	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	ns
Chip Selection to Power Up Time	tPU	0	-	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	12	-	15	-	20	ns

NOTE: The above parameters are also guaranteed at industrial temperature range.


WRITE CYCLE

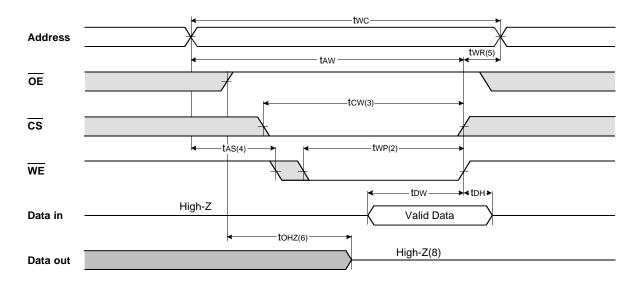
Parameter	Symbol	KM68V1002C/CL-12		KM68V1002C/CL-15		KM68V1002C/CL-20		l lmit
Faiailletei	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	twc	12	-	15	-	20	-	ns
Chip Select to End of Write	tcw	8	-	9	-	10	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	ns
Address Valid to End of Write	tAW	8	-	9	-	10	-	ns
Write Pulse Width(OE High)	twp	8	-	9	-	10	-	ns
Write Pulse Width(OE Low)	tWP1	12	-	15	-	20	-	ns
Write Recovery Time	twR	0	-	0	-	0	-	ns
Write to Output High-Z	twnz	0	6	0	7	0	9	ns
Data to Write Time Overlap	tDW	6	-	7	-	8	-	ns
Data Hold from Write Time	tDH	0	-	0	-	0	-	ns
End Write to Output Low-Z	tow	3	-	3	-	3	-	ns

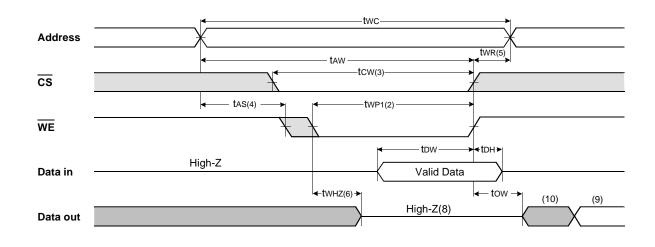

NOTE: The above parameters are also guaranteed at industrial temperature range.

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH)

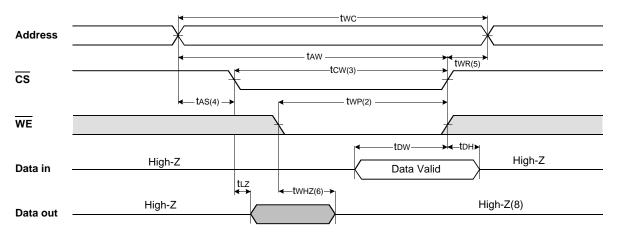
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)




NOTES(READ CYCLE)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VoH or VoL levels.
- 4. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with CS=VIL.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

TIMING WAVEFORM OF WRITE CYCLE(1) (OE = Clock)



TIMING WAVEFORM OF WRITE CYCLE(2) (DE=Low Fixed)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS = Controlled)

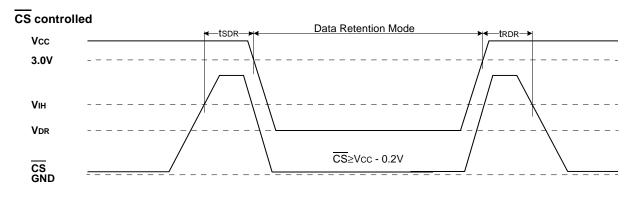
NOTES(WRITE CYCLE)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- A write occurs during the overlap of a low CS and WE. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition CS going high or WE going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of \overline{CS} going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address.
- 10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

CS	WE	OE	Mode	I/O Pin	Supply Current
н	х	Χ*	Not Select	High-Z	ISB, ISB1
L	н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	Dout	Icc
L	L	Х	Write	DIN	Icc

FUNCTIONAL DESCRIPTION

* NOTE : X means Don't Care.

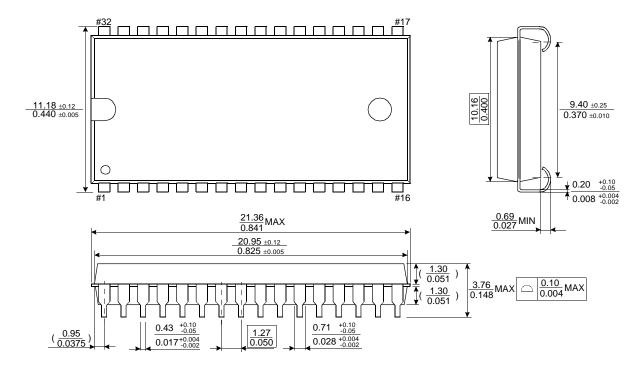


DATA RETENTION CHARACTERISTICS*(TA=0 to 70°C)

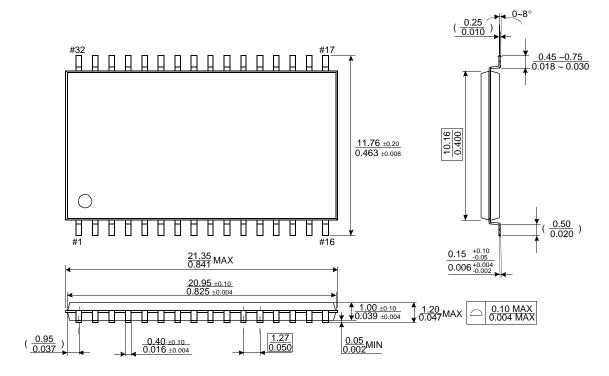
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for Data Retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.6	V
Data Retention Current	İdr	Idr Vcc=3.0V, CS ≥Vcc-0.2V Vin≥Vcc-0.2V or Vin≤0.2V		-	0.25	mA
		Vcc=2.0V, CS ≥Vcc-0.2V Vin≥Vcc-0.2V or Vin≤0.2V	-	-	0.2	
Data Retention Set-Up Time	tSDR	See Data Retention	0	-	-	ns
Recovery Time	trdr	Wave form(below)	5	-	-	ms

NOTE: The above parameters are also guaranteed at industrial temperature range. $\ ^{\ast}$ L-Ver only.

DATA RETENTION WAVE FORM



PACKAGE DIMENSIONS


32-SOJ-400

Units:millimeters/Inches

32-TSOP2-400F

Units:millimeters/Inches

